

Some History (Part 1)

Pre-TMDL

- Most concerns focused on the use of biocriteria to assess/affect NPDES permitting decisions (e.g., WET, WQBELs)
- 305b/303d almost an "anything goes" approach to listing (few effective "filters")
- Chemical vs. bioassessment comparisons
- Some concerns about quality of assessments
 re: 1996 305b guidance, 4 levels of rigor
- Pre-occupation with toxics & type I errors
- EPA policy reflected strict adherence to IA

Some History (Part 2)

Post-TMDL

- Concerns with "bad" listings
- Focus on numbers of listings (too many)
- NRC TMDL committee call for better bioassessment and TALUs
- NRC TMDL committee call for better "indicator discipline" and better M&A
- Focus now on assessment decisions at the waterbody scale
- Concerns still with type I error, but for different reasons – "unaware" of type II errors

Bioassessment/Biocriteria Milestones

1981: Karr and Dudley definition of biological integrity

1981: First EPA working group to address practical measurement of biological integrity

1983-4: Various regionalization projects use biota as the key endpoint of concern

1986: IBI procedure and regional reference sites

1987: EPA RBP manual

1987: First EPA National Biocriteria workshop 1987/90: Ohio and Maine adopt biocriteria in WQS

1990: EPA Policy on Biocriteria

1989/91: WQS 21st Century addresses biocriteria

1995: First assessment of state & tribal programs

1998: Vermont adopts biocriteria in WQS

2003: National Biocriteria Workshop

2002/5: EPA TALU process, workshops, CE process, etc.

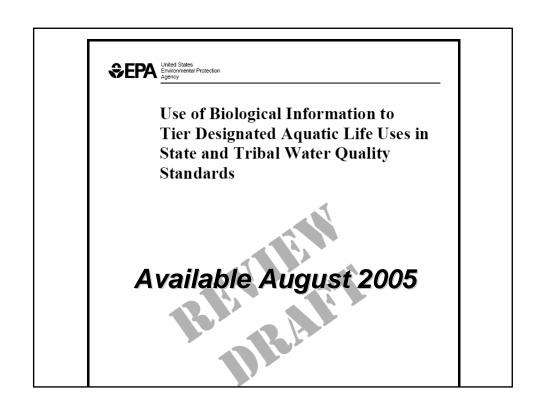
Some "Quotable Quotes" From the Not So Distant Past

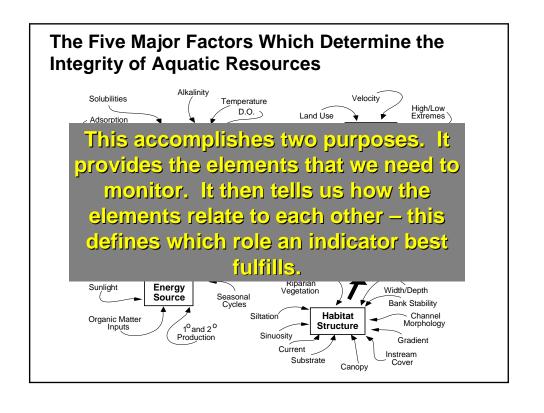
- "... (biocriteria) attempt to leapfrog state regulatory and enforcement programs well past the point of existing science." (1993)
- "Biocriteria would be of little help to the NPDES program and may complicate permit issuance . . ." (1992)
- "... as waters improve, biocriteria will become more stringent leaving the regulated community on a never-ending merry-go-round of increasingly stringent requirements." (1991)
- "... most states lack the resources and expertise to pull this (biocriteria) off." (1997)

Some Past Issues & Concerns About Bioassessments and Biocriteria

- Not based on "hard science" like other criteria
- Results can be manipulated to affect outcomes
- Uncertainty about relationship with established criteria and regulations
- Not fully developed enough to use in management applications
- It can determine an impairment, but causes cannot be derived or inferred
- It costs too much

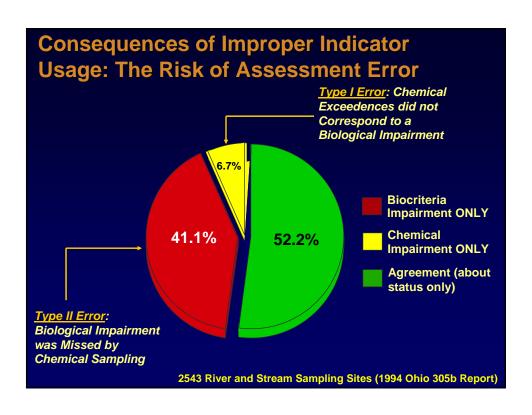
EVOLUTION OF ASSESSING SURFACE WATER INTEGRITY: ADDING NEW & BETTER TOOLS WATER QUALITY —— **→** WATER RESOURCE • Simple Chemical • More Chemical • Complex Chemi- • More Complex Criteria • Criteria • Chemical Criteria • Tiered Aquatic • Tiered Aquatic • Tiered Aquatic One Aquatic Life Use Life Uses Life Uses Life Uses (1974 - 1978) (1978 - 1980) Narrative Bio- Numerical Biological Criteria **logical Criteria** (1980 - 1987) • Whole Effluent The tools to assess biological condition & perform assessment have at outpaced policy


The "Law of Unintended Consequences"

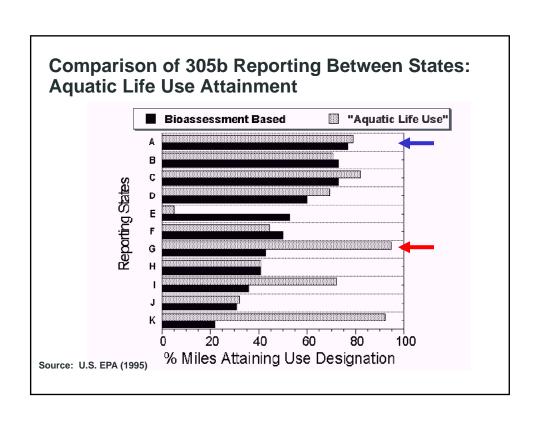

We need a management framework that --

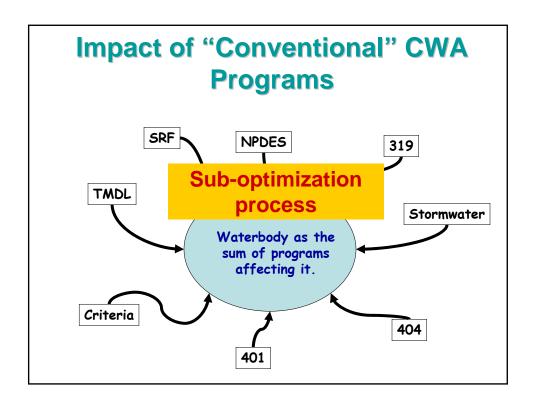
- Targets actions to achieve environmental results
- Fosters setting ecologically sound goals
- Measures and communicates what we've accomplished

TALU provides the tools

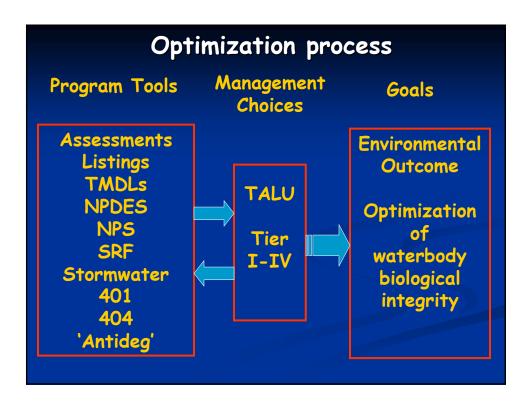


Types of Environmental Indicators: How Each is Used Makes a Difference


- 1. Stressor Indicators (pollutant loadings, land use, habitat) best used to indicate impacts
- 2. Exposure Indicators (e.g., chemical-specific, biomarkers, toxicity tests) best used to indicate risk of harm or undesirable changes
- 3. Response Indicators (e.g., biological community condition) best used to indicate whole effects and as a performance end-point


Problems occur when indicators are used as surrogates outside their most appropriate role

Surrogate Indicators Propagate Errors in the Assessment Process


- Chemical assessments are highly prone to type II error propagation – what are the consequences to watershed management?
- If we continue policies that instill a disincentive to upgrade bioassessment programs because of a preoccupation with type I errors, there is a real risk of perpetuating the net loss in aquatic resource quality.

Symptoms of An Incomplete Foundation for WQ Management

- General or "colloquial" uses and criteria
- Reliance on prescriptive policies
- Acceptance of anecdotal information
- "Hand-offs" in the assessment process
- Point source "culture" & translation of concepts to TMDLs and NPS
- Reported statistics fail "straight face" test
- Gross dissatisfaction with program outputs (e.g., recent TMDL experiences)

An Integrated Approach to Water Quality Management

Water Quality Based

- Parameter specific criteria
- Surrogate assessment
- Pollutant focused
- Partial coverage
- Bottom up approach
- Individual effects
- Stress/exposure indicator
- Design criteria

Bioassessment Based

- Biological criteria
- Direct assessmentResource focused
- Complete coverage
- Top down approach
- Cumulative effects
- Response indicator
- Impact assessment criteria

Integration of both approaches is needed to assure protection of water resources

States Evaluated Since 2002-4: Region I: CT,ME,RI Region IV: AL Region V: IL,IN,MI,MN,WI,OH Region VI: NM Region VIII: CO, MT Region IX: AZ plus Selected Tribes Measures the rigor of the bioassessment program Ed Hammer, USEPA/Region 5 Tina Laidlaw, USEPA/Region 10

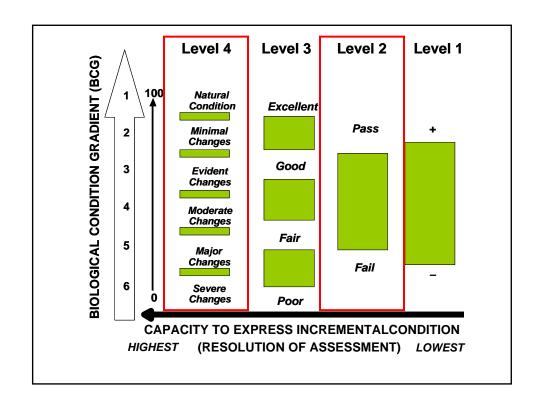
Key Concepts

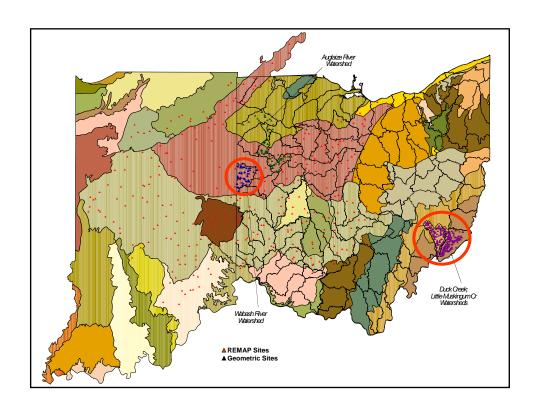
Accuracy: Biological assessments should produce sufficiently accurate delineations to minimize Type I and II assessment errors.

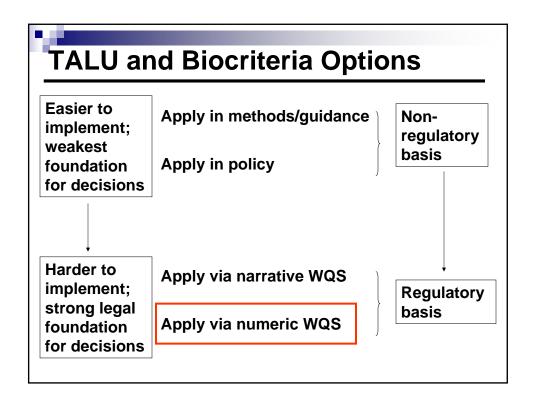
Comparability: technically different approaches should produce comparable assessments in terms of condition ratings, impairments, & diagnostic properties.

Comprehensiveness: biological response is evaluated in conjunction with other stressor/exposure information to understand the key limiting factors.

Cost-Effectiveness: having reliable biological data to support management decisions outweighs the intrinsic costs of development and implementation (NRC 2001).


What Do the Levels Mean?


Level 1 produces general assessments - <u>not</u> amenable to supporting most tasks *i.e.*, status, severity/magnitude, causal associations.


Level 2 includes pass/fail to multiple condition assessments (3-4 categories); capable of general causal determinations.

Level 3 is capable of incremental condition assessment along the BCG and for most causal associations; <u>single assemblage limitations</u>.

Level 4 provides full program support & reasonably robust, accurate, & complete assessments including <u>scientific</u> <u>certainty</u>, <u>accuracy</u>, <u>relevancy of condition</u>, <u>severity & extent</u>, and causal associations.

We Also Need Explicit Implementation Provisions

Rule language that addresses:

- 1) What are management options when biocriteria determine attainment of a TALU?
- 2) What are management options when biocriteria determine non-attainment?
- 3)L4 programs are best positioned to provide the <u>desired certainty</u>.

We Also Need Training

Why?

- 1) Most "decision makers" are not well versed in the scientific underpinnings - process is laden with 1970-80s era presumptions
- 2) TALU is an integrated process that challenges the relative simplicity of 1970-80s era EPA criteria science & the policies that followed (most of which have not kept pace)

Administrative Output vs. Resource **Outcomes Based Management**

ADMINISTRATIVE OUTPUTS BASED

RESOURCE **END OUTCOMES** BASE

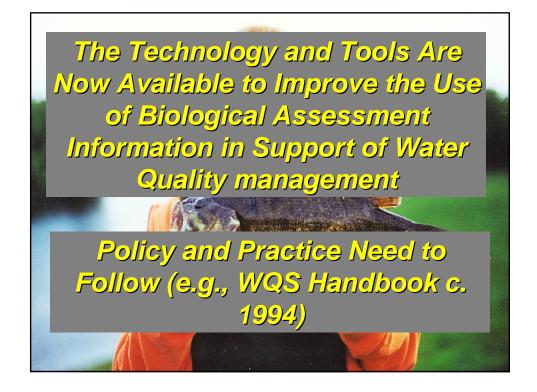
TALU Fosters Effectiveness Based Programs Goal:

(Program execution) (Attain designate

Measures: Administrative Actions Indicator End-points

(Lists, Permits, Funding, (Biological, Chemical, Physical)

Rules)


Improve Programs Results:

Programs are Tools to (Reduce backlogs, Improve the Environment

improve timeliness) (Admin. outputs evaluated by "If you don't know where you are going, you end up somewhere else."

Yogi Berra

http://www.rinkworks.com/said/yogiberra.shtml

